3.1293 \(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=130 \[ -\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)}+\frac {(A+B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

-(A-B+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2)+(A-B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d+(A+B-C)*(cos(1/2*d*x+1/2*c)^2)
^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4221, 3041, 2748, 2641, 2639} \[ -\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)}+\frac {(A+B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x]),x]

[Out]

((A - B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + ((A + B - C)*Sqrt[Cos[
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - ((A - B + C)*Sin[c + d*x])/(d*(a + a*Cos[c + d
*x])*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\\ &=-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (A+B-C)+\frac {1}{2} a (A-B+3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sqrt {\sec (c+d x)}}+\frac {\left ((A+B-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {\left ((A-B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=\frac {(A-B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A+B-C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.76, size = 126, normalized size = 0.97 \[ \frac {2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (-(A-B+C) \left (\sin (c+d x)-\tan \left (\frac {1}{2} (c+d x)\right )\right )+(A+B-C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(A-B+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*((A - B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (A + B
- C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (A - B + C)*(Sin[c + d*x] - Tan[(c + d*x)/2])))/(a*d*(1 +
Cos[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 2.92, size = 281, normalized size = 2.16 \[ \frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A -2 B +2 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B -C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+
B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))-3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B+2*C)*sin(1/2*d*x+1/2*c)^4+(-A+B-C)*sin(1/2*d*x+1
/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1
/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{a+a\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1/cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x)),x)

[Out]

int(((1/cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)

[Out]

(Integral(A*sqrt(sec(c + d*x))/(cos(c + d*x) + 1), x) + Integral(B*cos(c + d*x)*sqrt(sec(c + d*x))/(cos(c + d*
x) + 1), x) + Integral(C*cos(c + d*x)**2*sqrt(sec(c + d*x))/(cos(c + d*x) + 1), x))/a

________________________________________________________________________________________